
Towards Demystifying the Impact of Dependency Structures on
Bug Locations in Deep Learning Libraries

Di Cui
Xidian University, China
cuidi@xidian.edu.cn

Xingyu Li
Xidian University, China
lixy@stu.xidian.edu.cn

Feiyang Liu
Xidian University, China

liufeiyang@stu.xidian.edu.cn

Siqi Wang
Xidian University, China

20031211660@stu.xidian.edu.cn

Jie Dai
Xidian University, China
daijiexd@foxmail.com

Lu Wang
Xidian University, China
wanglu@xidian.edu.cn

Qingshan Li*
Xidian University, China
qshli@mail.xidian.edu.cn

ABSTRACT
Background: Many safety-critical industrial applications have
turned to deep learning systems as a fundamental component. Most
of these systems rely on deep learning libraries, and bugs of such
libraries can have irreparable consequences. Aims: Over the years,
dependency structure has shown to be a practical indicator of soft-
ware quality, widely used in numerous bug prediction techniques.
The problem is that when analyzing bugs in deep learning libraries,
researchers are unclear whether dependency structures still have
a high correlation and which forms of dependency structures per-
form the best. Method: In this paper, we present a systematic
investigation of the above question and implement a dependency
structure-centric bug analysis tool: Depend4BL, capturing the in-
teraction between dependency structures and bug locations in deep
learning libraries. Results: We employ Depend4BL to analyze the
top 5 open-source deep learning libraries on Github in terms of
stars and forks, with 279,788 revision commits and 8,715 bug fixes.
The results demonstrate the significant differences among syntactic,
history, and semantic structures, and their vastly different impacts
on bug locations. Their combinations have the potential to further
improve bug prediction for deep learning libraries. Conclusions:
In summary, our work provides a new perspective regarding to the
correlation between dependency structures and bug locations in
deep learning libraries. We release a large set of benchmarks and a
prototype toolkit to automatically detect various forms of depen-
dency structures for deep learning libraries. Our study also unveils
useful findings based on quantitative and qualitative analysis that
benefit bug prediction techniques for deep learning libraries.

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’22, September 19–23, 2022, Helsinki, Finland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00
https://doi.org/10.1145/3544902.3546246

CCS CONCEPTS
• Software and its engineering→ Software Maintenance.

KEYWORDS
Deep Learning System, Dependency Structure, Bug Prediction.
ACM Reference Format:
Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan
Li*. 2022. Towards Demystifying the Impact of Dependency Structures on
Bug Locations in Deep Learning Libraries. In ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM)

(ESEM ’22), September 19–23, 2022, Helsinki, Finland. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3544902.3546246

1 INTRODUCTION
In recent years, deep learning has received much attention in many
security-critical domains, such as autonomous driving [17] and
healthcare [38]. However, it has been demonstrated that deep learn-
ing systems are bug-prone and may cause serious consequences,
such as the Tesla/Uber accidents [8, 11]. The great majority of these
systems rely on deep learning libraries, and their quality assurance
is becoming increasingly crucial.

Previous studies [15, 24, 42, 46, 51, 57, 64] revealed that depen-
dency structure is a valuable source to inform bugs and numerous
approaches have been proposed to use dependency structure as
the basis for bug prediction: three forms of dependency structures
have been frequently and intensively studied: syntactic structure
(derived from source code, capturing syntactic dependencies such
as method call and inheritance), history structure (derived from
the revision , capturing the co-change coupling among software
entities), and semantic structure (derived from identifiers and com-
ments, calculating the textual similarity among software entities).
All of these dependency structures are considered in previous bug
prediction techniques.

The problem is that when analyzing bugs in a specific and influ-
ential type of software system: deep learning libraries, it is not clear
whether dependency structures still present a high correlation like
existing studied software systems, and which forms of dependency
structures perform best. The fundamental problem of the corre-
lation between dependency structures and bug locations in deep
learning libraries has not been adequately explored in previous

249

https://doi.org/10.1145/3544902.3546246
https://doi.org/10.1145/3544902.3546246
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544902.3546246&domain=pdf&date_stamp=2022-09-19

ESEM ’22, September 19–23, 2022, Helsinki, Finland Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan Li*

research. The answer will provide insights on designing effective
and efficient bug prediction techniques for deep learning libraries
to assure their quality.

In this paper, we explore the following research questions about
syntactic, history, and semantic structures in deep learning libraries:
RQ1: For these dependency structures in deep learning li-

braries, to what extent are they similar to each other?
RQ2: For these dependency structures in deep learning li-

braries, do they present similar performances on bug
prediction?

RQ3: Whether combinations of these dependency structures
have the potential to improve bug prediction for deep
learning libraries?

To answer these questions, we systematically investigate the
impact of three dependency structures on bug locations. Figure 1
presents two different decision pipelines between machine learning-
based and dependency structure-centric bug analysis process. For
the former pipeline: machine learning-based bug analysis process,
the researcher is confused about why the bug location is detected.
For the latter pipeline: dependency structure-centric bug analysis
process, after the applying of bug analysis tool on dependency struc-
tures, the calculated interaction is capable of providing explainable
results for particular data decisions. We adopt the dependency-
centric bug analysis process in our study.

We implement a dependency structure-centric bug analysis tool:
Depend4BL to reveal the intrinsic correlation between dependency
structures and bug locations in deep learning libraries. Compared
with state-of-the-art related reverse engineering techniques, De-
pend4BL focuses on capturing the interplay between dependency
structures and bug locations, as well as presenting interpretability,
comprehensibility and time overhead advantages.

In this paper, we report our comprehensive empirical study to
investigate the correlation of three dependency structures: syn-
tactic, history, and semantic with bug locations in deep learning
libraries. With the assistance of Depend4BL, we intensively studied
the top 5 open-source deep learning libraries on Github, ranked by
stars and forks, with 279,788 revision commits and 8,715 bug fixes.
Using Depend4BL, for each dependency structure, we calculate its
interaction with bug locations. Based on these data, we answer the
three research questions as follows:

(1) Similarity Analysis. Comparing syntactic, history, and se-
mantic structures, only about 6% of these structures in deep
learning libraries are similar. This implies that their effec-
tiveness should be varied as well when used to predict bugs
and it is imperative to further explore their influences on
bug locations.

(2) Coverage Analysis. Syntactic, history, and semantic struc-
tures capture different subsets of bug locations in deep learn-
ing libraries. The semantic structure captures the least lo-
cations but with the highest efficiency. By contrast, the his-
tory structure captures the most locations with moderate
efficiency. The syntactic structure also captures moderate
locations but with the lowest efficiency. Each structure has
its advantages and drawbacks.

(3) Combination Analysis. Combinations of syntactic, his-
tory and semantic structure have the potential to effectively

Source Code

Revision Predictor Location Confused Results

Structure Tool Interaction Explainable Results

(a) Machine Learning-based Bug Analysis Process

(b) Dependency Structure-centric Bug Analysis Process

Figure 1: Illustration of machine learning-based and depen-
dency structure-centric bug analysis process.

improve bug prediction performance: unions of all struc-
tures cover more bug locations, and combinations involving
semantic structure capture severe bug locations more effi-
ciently. Designing flexible strategies of structure combina-
tions can enhance the bug prediction performance.

The contributions of our work are:
• A systematic methodology for comparing various forms of
dependency architectures and their effects on bug locations
in deep learning libraries. We perform similarity, coverage,
and combination analysis on syntactic, history, and semantic
structures. Our results first revealed the significant differ-
ence between these dependency structures in deep learning
libraries, as well as their drastically different correlations
with bug locations, which advanced our understanding of
dependency structures in deep learning libraries.
• A new perspective to look at bugs of deep learning libraries.
Our empirical study revealed that various forms of depen-
dency structure capture vastly different subsets of bug loca-
tions. When designing a bug prediction technique for deep
learning libraries, the designer should take differences of
syntactic, history, and semantic structures into considera-
tion. The intersection of semantic structure captures severe
locations more efficiently, whereas the union of all structures
captures more bug locations.
• Our study enables several follow-up research directions with
a benchmark of deep learning libraries including the top 5
open-source deep learning libraries on Github with 279,788
revision commits, 8,715 bug fixes,1,715 bug locations, 73,225
syntactic dependencies, 203,867 history dependencies and
32,773 semantic dependencies, and a reusable toolkit: De-
pend4BL to automatically detect various forms of depen-
dency structures and calculate their interactions with bug
locations. Our findings can also unveil useful suggestions
for bug prediction in deep learning libraries. The benchmark
and toolkit are publicly available [3].

2 PRELIMINARY
In this section, we explain the terminologies used in our paper.
Dependency Structure For a software system, we model its de-
pendency structure as a directed multi-graph which is illustrated
as follows:

DS =
{
V ,Esyn ,Ehis ,Esem

}
(1)

250

Towards Demystifying the Impact of Dependency Structures on Bug Locations in Deep Learning Libraries ESEM ’22, September 19–23, 2022, Helsinki, Finland

where V represents the set of code entities within the system. Pack-
ages, files, classes, methods, and statements are all examples of code
entities. We use the file as the code entity in this paper. The syn-
tactic structure, historical structure, and semantic structure among
code entities are represented by Esyn , Ehis , Esem , which are further
explained as follows:
Syntactic Structure is the most frequently used dependency struc-
ture among code entities, including call, cast, contain, create, extend,
implement, import, parameter, return, throw, and use [4]. Given
two classes A and B, we further describe the description of each
syntactic type as follows:

(1) Call, is a dependency of method invocation, such as calling
the method b of class B in class A: “B.b()”.

(2) Cast, is a dependency of expression and its cast type, such
as casting the variable a into class B type in class A: “(B) a”.

(3) Contain, indicates the definition of class, method, or variable,
such as containing the variable a of class B type in class A:
“B a”.

(4) Create, is a dependency of method and its object created,
such as creating an instance of class B type: “new B()”;

(5) Extend, means inheritance of object-oriented design, such
as extending class B in class A: “class A extends B {...}”.

(6) Implement, is a dependency of the method implementation
and its interface/abstract class, such as implementing ab-
stract class B in class A: “class A implements B {...}”.

(7) Import, indicates the introduction of class, method or vari-
able, such as importing variable b of class B in class A: “im-
port B.b;”.

(8) Parameter, is a dependency of method and its parameter,
such as variable b of class B type as the parameter in class
A: “void a(B b)”.

(9) Return, is a dependency of method and its return type, such
as returning class B in method a of class A: “B a(){...}”.

(10) Throw, is similar as Return, is a dependency of method and
its throw type, such as throwing class B in class A: “throw
new B();”.

(11) Use, is a dependency of expression and its used types/variables,
such as using variable b of class B in class A: “int a=B.b*10”;

These syntactic dependencies exist in classes, methods and state-
ments. In our paper, we use the file as the basic unit and aggregate
above syntactic dependencies within files as syntactic structure:
Esyn .
History Structure, also known as evolutionary structure, is de-
rived from the revision history of a software system, modeling the
co-change relationship among files. It is defined as follows:

Ehis =
{
(fi , fj) | cochanдe(fi , fj) > th ∧ fi , fj ∈ V

}
(2)

where fi and fj represent the file within code entities in a software
system. cochanдe(fi , fj) represents how fi and fj change together
in the revision history, and its calculation is further illustrated in
Section 3.
Semantic Structure is derived from the source code lexicon to
capture the textual similarity between files.

Esem =
{
(fi , fj) | textsim(fi , fj) > th ∧ fi , fj ∈ V

}
(3)

Commit Message

Commit ID

Location1
Location2
Location3

Fix Churn

Figure 2: The record of a bug fix: commit a775e0c in Tensor-
Flow

RQ1: Similarity Analysis

RQ2: Coverage Analysis

RQ3: Combination Analysis

Empirical Study

Commits

Depends

Antlr
Source Code

Bug Fixes

Syntactic
Structure

Semantic
Structure

History
Structure

Depend4BL

Applications

Benchmark Toolkit

Bug Prediction Technique

(c) Interplay Calculation

Bug
Locations

(a) Data Collection

(b) Model Contruction

Figure 3: Overview of our study and its applications.

where fi and fj represent the file within code entities in a software
system. th represents the threshold. textsim(fi , fj) represents the
textual similarity between fi and fj , and its calculation is further
illustrated in Section 3.
Bug Fix is an instance of code commit which is applied to fix bugs
in version control systems such as SVN [10] and Git [5]. Typically,
this commit adds code changes on bug locations and also reports
textual description as commit message. Figure 2 shows such a record
of bug fix: commit a775e0c [1] in TensorFlow [12]. In this bug fix,
we mark the commit message and commit ID. We also outline fix
churn (lines of code) and bug locations. In this paper, we model a
bug fix (f ixi) as a set of fixed files and involved lines of code on
these files, which are illustrated as follows:

Fixi =
{
(fj , churn(Fixi , fj)) | j = 1, 2, · · · ,m

}
(4)

wherem represents the number of fixed files. fj and churn(Fixi , fj)
represent each fixed file and the involved lines of code.
Bug Location describes a set of code locations frequently involved
in bug fixes. In this paper, for a software system, we model the bug
location (BL) as follows:

BL =
{
(fj ,blj) | j = 1, 2, ...,m

}
blj =

{
(Fixi , churn(Fixi , fj)) | i = 1, 2, ...,n

} (5)

wherem and n represent the number of fixed files and the number
of bug fixes. For a fixed file: fj , Fixi and churn(Fixi , fj) represent
the involved bug fix and lines of code spent on Fixi .

3 OVERVIEW
Figure 3 presents the overview of our study.We select 5 open-source
deep learning libraries as our subjects (Section 3.2), and quantify
the impact of various dependency structures on bug locations using

251

ESEM ’22, September 19–23, 2022, Helsinki, Finland Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan Li*

Depend4L by: 1) mining code repositories to collect dependency
structures and bugs fixes, (2) modeling dependency structures and
bug locations, and (3) calculating the interplay between dependency
structures and bug locations. Based on the collected data, we con-
duct an empirical study by answering three research questions in
Section 4. This study enables several follow-up research detailed in
Section 5.

3.1 Studied Subjects
We choose 5 open-source deep learning libraries including Caffe
[32], Keras [7], Pytorch [45], TensorFlow [12], and Theano [13],
as our subjects for they are active in the deep learning commu-
nity according to stars and forks in Github, and most of them are
also frequently investigated in deep learning system research [29–
31, 41, 52, 54, 62]. These subject vary in sizes, applications, and
implementations.

3.2 Data Collection
Table 1 summarizes the statistical information of the data collected
in this paper, including syntactic structures, history structures, se-
mantic structures, bug fixes and bug locations. Affected by the size
of the deep learning library and the tools for generating the depen-
dency structure, the scale of dependency structure generated from
different libraries can vary significantly. The details are explained
as follows:
Syntactic Structure Collection.We employ Depends [4], a state-
of-the-art static analysis tool, to extract syntactic dependencies
among code entities. Depends can analyze 11 types of syntactic de-
pendencies including call, cast, contain, create, extend, implement,
import, parameter, return, throw, and use. Depends also support
dependency analysis from different programming languages, in-
cluding C and Python, which are used in our studied subjects. For
each subject, we extract various types of syntactic dependencies and
aggregate these dependencies at the file-level as syntactic structure.
History Structure Collection. We employ the history coupling
space [40], a novel conditional probability model to manifest how
likely a change to a file may influence other files. For a pair of files:
fi and fj , if they have history dependency, the following condition
should be satisfied:

cochanдe(fi , fj) > th ⇔ #(fi , fj) > th1 ∧
#(fi , fj)
#(fi)

> th2 (6)

where #(fi , fj) represents the number of co-change frequencies be-
tween fi and fj in the revision history. #(fi) represents the number
of change frequencies of fi in the revision history. th1 represents the
threshold of co-change frequencies and th2 represents the threshold
of co-change probability. Following the work of Mo et al. [40], we
heuristically set th1 and th2 as 5 and 0.33 respectively. We examined
all file pairs and collect file pairs satisfied with conditions as the
history structure.
Semantic Structure Collection.We take the following four steps
(i.e., extract identifiers and comments, process and filter noise, gen-
erate feature vectors, and calculate textual similarity) to capture
code semantics.

step1: extract identifiers and comments.We crawled the lexical
information including identifiers and comments by manually
implementing an Antlr-based lexical parser [2].

step2: preprocess and filter noise. We first split each collected
word according to the naming convention, such as camel
casing and snake casing, and then use the Porter algorithm
[33] to extract the stem. Finally, 345 natural language stop
words [33] are filtered from these words.

step3: generate feature vectors. For each file, we generate its
feature vector with three state-of-the-art text modeling tech-
nique, including TF-IDF [35], Word2Vec [36], and BERT [48],
based on preprocessed data.

step4: calculate textual similarity. For all file pairs, we calculate
the cosine similarity between generated feature vectors.

For a pair of files: fi and fj , if they have semantic dependency, the
following condition should be satisfied:

textsim(fi , fj) > th ⇔ cosine(t f (fi), t f (fj)) > th1

∧ cosine(wv(fi),wv(fj)) > th2 ∧ cosine(bt(fi),bt(fj)) > th3
(7)

where cosine represents the cosine similarity between feature vec-
tors. t f (fi),wv(f i), and bt(fi) represent the feature vector gener-
ated by TF-IDF, Word2Vec, and BERT for fi respectively. th1, th2,
and th3 represent the used threshold of cosine similarity in various
text modeling techniques. Following the work of Cui et al. [20], we
uniformly set the threshold: th1, th2, and th3 as 0.66. We examined
all file pairs and collect file pairs satisfied with conditions as the
semantic structure.
Bug Fix Collection. Following the previous work [22, 63], we
collect bug fixes from commits by heuristically mapping the commit
messages and bug-related keywords (namely bug, error, fault, fix,
patch or repair). For example, shown in Figure 2, this commit is
identified as a bug fix containing the keyword: “Fix”. To eliminate
noisy data in commits, this paper combines the Meta-change aware
SZZ [21], an improvement of the SZZ algorithm, to identify code
changes for bug fixes.
Bug Location Collection. For each bug fix, we use GumTree [6], a
state-of-the-art code difference detection tool, to detect fine-grained
bug locations. For example, shown in Figure 2, this bug fix have
3 bug locations at the file-level: kernel_util.cc, sub_test.cc, and
binary_op.py.

Overall, we collected 279,788 revision commits, 8,716 bug fixes,
1,715 bug locations, 73,225 syntactic dependencies, 203,867 history
dependencies, and 32,773 semantic dependencies from 5 studied
subjects: Caffe, Keras, Pytorch, TensorFlow, and Theano.

3.3 Model Construction
Dependency Structure Modeling. In our paper, for each form of
dependency structure, we split it into a suite of overlapped sub-
graphs: SGSet according to its structural impact scope. We use
each involved file as the leading file and formally define its impact
subgraph: ISG j as follows:

SGSet =
{
ISG j | j = 1, 2, ...,m

}
(8)

252

Towards Demystifying the Impact of Dependency Structures on Bug Locations in Deep Learning Libraries ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 1: Statistics of studied subjects. #Locations represents the number of bug locations: |BL|. #Syntactic, #History, #Semantic
represents the number of collected syntactic, history, and semantic dependencies: |Esyn |, |Ehis |, |Esem |.

Subject Version Length of History (#Months) #Commits #Fixes #Locations #Syntactic #History #Semantic

Caffe [32] 1.0 9/2013 to 4/2022 (103) 12,633 632 259 45 1,651 606
Keras [7] 2.8.0 3/2015 to 4/2022 (85) 6,972 2,068 467 12,296 62,099 860
Pytorch [45] 1.11.0 1/2012 to 4/2022 (123) 97,902 75 119 21,244 33,651 9,472
TensorFlow [12] 2.8.0 11/2015 to 4/2022 (77) 134,056 250 180 37,162 106,295 21,711
Theano [13] 1.0.5 1/2008 to 4/2022 (171) 28,225 5,690 690 2,478 171 124
Sum — 1/2008 to 4/2022 (171) 279,788 8,715 1,715 73,225 203,867 32,773

where m is the total number of impact subgraphs. Each impact
subgraph (ISG j) consists of two elements:

ISG j =
(
fj , suboridnate(fj)

)
(9)

where fj represents the leading file and suboridnate(fj) represents
the files that directly or indirectly depend on the leading file. In our
paper, we implement the automatic splitting of dependency struc-
tures using the transitive closure function in the complex network
analysis package: networkx [9]. Figure 4 presents a running exam-
ple of dependency structure modeling in Pytorch. As presented, f1
is the leading file. f2 directly depends on f1 and f3-f6 indirectly
depend on f1.
Bug LocationModeling. Based on the collected bug locations: BL,
we first rank all the locations in terms of frequency and churn. We
use BLFre_x%ile to model the subset of bug locations within the top
xth percentile, ranked based on the number of times involved in bug
fixes (bug frequency). We implement BLFre_x%ile by iteratively
counting the number of bug fixes: n for the bug location: blj in
equation 5. We also use BLChurn_x%ile to model the subset of bug
locations within the top xth percentile, ranked based on the number
of lines of code spent on bug fixes (bug churn). We implement
BLChurn_x%ile by iteratively calculating the number of lines of
code on bug fixes:

∑n
i=1 churn(Fix j , fj) for the bug location: blj in

equation 5.

3.4 Interplay Calculation
To investigate the correlation of different dependency structures
with bug locations, we further calculate its interaction. The inter-
play calculation can be deemed as a set cover problem (SCP), which
is a classical question in combinatorics and computer science shown
to be one of Karp’s 21 NP-complete problems [34]. In our paper,
subgraphs: SGSet can be analogized as the set used to cover. Bug
locations, like BLFre_x%ile or BLChurn_x%ile , can be analogized
as the set to cover. As a heuristic algorithm, the greedy algorithm
is efficient and easy to understand. Considering the scale of inter-
active computation in this paper, we design a greedy algorithm to
solve this problem.

Algorithm 1 shows the procedure of our greedy algorithm. The
input of this algorithm is a set of impact subgraphs: SGSet and
the target bug locations to be covered: TarдetSet . The output is
several subgraphs capturing the bug locations: ResultSet . Line 2
to 14 iteratively inspects each subgraph. Line 4 to 9 select the
subgraph covering the most bug locations: TarдetSet from all the
subgraphs: SGSet . After selecting, Line 11 removes the selected
subgraph: MaxSG and Line 13 removes the involved files of the

Algorithm 1 GreedyCoverage(SGSet,TargetSet)
1: ResultSet← ∅
2: while TargetSet , ∅ do
3: # find the subgraph covering TargetSet most
4: MaxSG← ∅
5: for ISG ∈ SGSet do
6: if |ISG ∩ TargetSet| > |MaxSG ∩ TargetSet| then
7: MaxSG← ISG
8: end if
9: end for
10: ResultSet.append(MaxSG)
11: SGSet.remove(MaxSG)
12: # remove involved files in the TargetSet
13: TargetSet.remove(MaxSG ∩ TargetSet)
14: end while
15: return ResultSet

1: test_fx_const_fold.py
2: node.py
3: graph.py
4: _compatibility.py
5: operator_schemas.py
6: immutable_collections.py

f1

f2

f4 f6

f3 f5

Figure 4: A running example of impact subgraph in Pytorch.
test_fx_const_fold.py is the leading file.→ represents direct
dependencies.d represents indirect dependencies.

selected subgraph:MaxSG ∩TarдetSet . Line 15 finally returns the
results: ResultSet .

4 EMPIRICAL STUDY
Based on the collected data, in this paper, we aim to explore the
following three research questions:
RQ1: For these dependency structures in deep learning li-

braries, to what extent are they similar to each other?
The answer to this question will advance our understanding
regarding to the overall differences of these three depen-
dency structures in deep learning libraries.

RQ2: For these dependency structures in deep learning li-
braries, do they present similar performances on bug
prediction?
The answer to this question will shed lights on their differ-
ences in terms of predicting bugs for deep learning libraries.

253

ESEM ’22, September 19–23, 2022, Helsinki, Finland Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan Li*

RQ3: Whether combinations of these dependency structures
have the potential to improve bug prediction for deep
learning libraries?
The answer to this question will provide suggestions re-
garding how various dependency structures can be better
leveraged to predict bugs for deep learning libraries.

We run all the experiments on a 2.4GHz Intel Xeon-4210R server
with 10 logical cores and 128GB of memory.

4.1 RQ1: Similarity Analysis
Approach. To answer RQ1, we measure the overall similarity
among three forms of dependency structures: syntactic structure,
history structure, and semantic structure in our studied subjects
using a2a [37]. We measure the local similarity among these depen-
dency structures using cvд [37]. The related concepts are listed as
follows:

a2a [37] is a percentage score that measures the distance between
two dependency structures: A and B, computed as follows:

a2a(A,B) = (1 −
mto(A,B)

aco(A) + aco(B)
) × 100% (10)

where mto(A,B) is the minimum number of operations needed
to transform structure A into structure B. aco(A) or aco(B) is the
number of operations needed to construct structure A or B from
a “null” structure. The calculation details are available in [37]. a2a
returns 0% if two structures are completely different. a2a returns
100% if two structures are same. The closer the two structures are,
the higher the score.

cvд [37] measures the extent to which two structures’ subgraphs
overlap:

cvд(A,B) =
simC(A,B)

allC(A)
× 100% (11)

simC(A,B) returns the subset of subgraphs from A that have at least
one “similar" subgraph in B. allC(A) returns the set of all subgraphs
in A. The calculation details are also available in [37]. For example,
given two structuresA and B, cvд(A,B) = 70% and cvд(B,A) = 40%
mean that 70% of subgraphs in structure A still exist in structure B,
while 100% − cvд(B,A) = 60% of the subgraphs in structure B have
been added based on structure A.
Result. Table 2 demonstrates the similarity results as a square ma-
trix, where rows and columns are labeled by the same set of three
dependency structures: syntactic, history, and semantic structure
in the same order. The cells contain the a2a and cvg scores. For in-
stance, the cell (Caffe.Syntactic, History.a2a) is marked with “0.3%",
meaning that the a2a score between syntactic structure and history
structure in Caffe is 0.3%. In this matrix, the a2a result is symmetric
and the cvg result is asymmetric according to its definitions. We
highlight the greatest a2a and cvg scores in studied projects with a
grey background color. As presented in Table 2, syntactic, history,
and semantic structure present significant differences both on the
overall and local similarity: the average a2a score between syntac-
tic, history and semantic structure of studied projects is 0.8%-5.9%.
The average avg score between syntactic, history and semantic
structure of studied projects is 0.1%-4.9%.

Table 2: The similarities between syntactic structure, history
structure and semantic structure.

Syntactic History Semantic
Subject Type a2a cvg a2a cvg a2a cvg

Syntactic — — 0.3% 3.3% 1.0% <0.1%
Caffe History 0.3% 0.4% — — 16.4% 0.8%

Semantic 1.0% <0.1% 16.4% 3.3% — —
Syntactic — — 5.7% 1.6% 1.9% 0.2%

Keras History 5.7% 1.3% — — 1.3% 0.9%
Semantic 1.9% 1.1% 1.3% 11.0% — —
Syntactic — — 0.3% 2.4% 0.5% 0.2%

KerasPytorch History 0.3% 1.3% — — 2.9% 0.1%
Semantic 0.5% 1.2% 2.9% 1.1% — —
Syntactic — — 0.2% 1.1% 0.5% 0.3%

TensorFlow History 0.2% 0.3% — — 2.5% 0.1%
Semantic 0.5% 0.6% 2.5% 1.6% — —
Syntactic — — 0.4% 0.9% 0.2% <0.1%

Theano History 0.4% 1.8% — — 6.5% 1.2%
Semantic 0.2% <0.1% 6.5% 7.6% — —
Syntactic — — 1.4% 1.9% 0.8% 0.1%

Avg History 1.4% 1.0% — — 5.9% 0.6%
Semantic 0.8% 0.6% 5.9% 4.9% — —

Answer to RQ1: Comparing syntactic, history, and semantic
structures, only about 6% of these structures in deep learning
libraries are similar.

Implications. The result of RQ1 reveals that syntactic, history,
and semantic dependencies produce drastically diverse structures.
Compared with similarity results of previously studied software
systems [14, 20, 64], these dependency structures in deep learning
libraries are substantially less similar. This implies that their effec-
tiveness should be varied as well when used to predict bugs. It is
imperative to explore their influences on bug locations.

4.2 RQ2: Coverage Analysis
Approach. To answer RQ2, we first define a specific subset of bug
locations asTarдetSet , which can be either bug locations frequently
involved in bug fixing: BLFre_x%ile , or bug locations that are most
expensive to fix: BLChurn_x%ile . We employ multiple types of
TarдetSet , from BLFre_10%ile to BLChurn_100%ile (BL), and from
BLChurn_10%ile to BLChurn_100%ile (BL). For eachTarдetSet , we
use our tool: Depend4BL to locate its corresponding interactions as
the coverage result: ResultSet and calculate its precision and recall
score: CPrecision and CRecall as follows:

CPrecision =
|ResultSet ∩TarдetSet |

|ResultSet |
× 100%

CRecall =
|ResultSet ∩TarдetSet |

|TarдetSet |
× 100%

(12)

For each subset of dependency structures and each subset of bug
locations:TarдetSet from each subject, we employ Depend4BL and
calculate the precision and recall scores: CPrecision and CRecall .
Result. Table 3 presents the averageCPrecision andCRecall scores
of studied subjects to cover from BLFre_10%ile to BLFre_100%ile ,
and from BLChurn_10%ile to BLChurn_100%ile using syntactic,

254

Towards Demystifying the Impact of Dependency Structures on Bug Locations in Deep Learning Libraries ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 3: The average coverage results:CPrecision andCRecall for various subsets of bug locations: BLFre_x%ile andBLChurn_x%ile
in studied subjects.

BLFre_x%ile
Type Measure 10%ile 20%ile 30%ile 40%ile 50%ile 60%ile 70%ile 80%ile 90%ile 100%ile Avg
Syntactic CPrecision 5.3% 4.7% 7.0% 5.6% 6.7% 6.7% 8.6% 8.6% 7.3% 8.2% 6.9%
Syntactic CRecall 38.8%+ 35.1% 34.9% 33.0% 29.8% 29.3% 29.8% 28.8% 28.7% 29.8% 31.8%
History CPrecision 42.8%+ 37.1%+ 21.6% 21.9% 21.3% 22.5% 25.4% 26.0% 27.0% 28.2% 27.4%
History CRecall 22.4% 36.7%+ 38.3%+ 41.2%+ 41.5%+ 41.6%+ 42.5%+ 42.2%+ 41.4%+ 41.8%+ 39.0%+
Semantic CPrecision 35.1% 23.6% 29.4%+ 31.2%+ 31.3%+ 32.2%+ 37.2%+ 39.7%+ 42.9%+ 41.5%+ 34.4%+
Semantic CRecall 4.9% 8.4% 10.0% 9.2% 9.2% 9.3% 9.6% 9.0% 9.1% 10.3% 8.9%

BLChurn_x%ile
Type Measure 10%ile 20%ile 30%ile 40%ile 50%ile 60%ile 70%ile 80%ile 90%ile 100%ile Avg
Syntactic CPrecision 5.6% 5.7% 5.7% 9.0% 6.8% 7.9% 7.8% 8.7% 7.7% 8.2% 7.3%
Syntactic CRecall 28.7%+ 30.4% 29.9% 29.8% 29.6% 28.5% 28.5% 28.5% 29.7% 29.8% 29.3%
History CPrecision 20.6% 16.6% 17.9% 19.4% 19.4% 22.2% 23.8% 26.0% 27.8% 28.2% 22.2%
History CRecall 28.7%+ 32.8%+ 34.9%+ 36.0%+ 37.4%+ 39.3%+ 40.6%+ 41.6%+ 42.3%+ 41.8%+ 37.6%+
Semantic CPrecision 31.8%+ 25.1%+ 25.5%+ 30.6%+ 31.0%+ 32.6%+ 34.3%+ 37.9%+ 38.7%+ 41.5%+ 32.9%+
Semantic CRecall 8.6% 6.3% 6.9% 8.3% 9.2% 8.2% 9.1% 9.8% 10.3% 10.3% 8.7%

20% 40% 60% 80% 100%
BLFre_x%ile

(a) Caffe

0%

20%

40%

60%

80%

100%

C
Pr

ec
is

io
n/

C
R

ec
al

l

20% 40% 60% 80% 100%
BLFre_x%ile

(b) Keras

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLFre_x%ile
(c) Pytorch

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLFre_x%ile
(d) Tensorflow

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLFre_x%ile

(e) Theano

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLChurn_x%ile

(f) Caffe

0%

20%

40%

60%

80%

100%

C
Pr

ec
is

io
n/

C
R

ec
al

l

20% 40% 60% 80% 100%
BLChurn_x%ile

(g) Keras

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLChurn_x%ile

(h) Pytorch

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLChurn_x%ile
(i) Tensorflow

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%
BLChurn_x%ile

(j) Theano

0%

20%

40%

60%

80%

100%

Syn-CP Syn-CR His-CP His-CR Sem-CP Sem-CR

Figure 5: The coverage results: CPrecision and CRecall for various subsets of bug locations: BLFre_x%ile and BLChurn_x%ile in
studied subjects: Caffe, Keras, Pytorch, TensorFlow, Theano.

history, and semantic structure respectively. We highlight the great-
est CPrecision and CRecall scores with a grey background color
and a + mark for each bug location. Figure 5 depicts the coverage
results for each subjects, where the x-axis represents BLFre_x%ile
or BLChurn_x%ile and the y-axis representsCPrecision orCRecall .
As presented in Table 3 and Figure 5, we observed that bug loca-
tions are covered differently in terms of syntactic, historical, and
semantic structure. The results in Table 3 and Figure 5 demonstrate
that the semantic structure presents the lowest CRecall score: 8.9%
in BLFre_x%ile and 8.7% in BLChurn_x%ile but the highest CPreci-
sion score: 34.4% in BLFre_x%ile and 32.9% in BLChurn_x%ile on
average. By contrast, the history structure presents the highest CRe-
call score: 39.0% in BLFre_x%ile and 37.6% in BLChurn_x%ile but

moderate CPrecision score on average. The syntactic structure also
presents a moderate CRecall score and the lowest CPrecision score:
39.0% in BLFre_x%ile and 37.6% in BLChurn_x%ile on average.

Answer toRQ2: Syntactic, history, and semantic structures cap-
ture different subsets of bug locations in deep learning libraries.
The semantic structure captures the least locations but with the
highest efficiency. By contrast, the history structure captures the
most locations with moderate efficiency. The syntactic structure
also captures moderate locations but with the lowest efficiency.
Each structure has its advantages and drawbacks.

255

ESEM ’22, September 19–23, 2022, Helsinki, Finland Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan Li*

Implications. The result of RQ2 demonstrates that the syntactic,
history, and semantic structures are significantly varied in terms of
capturing bug locations in deep learning libraries. Compared with
coverage results of previously studied software systems [14, 20, 64],
the characteristics of bug locations covered by each structure vary
significantly as well. The indication is that when performing bug
prediction for deep learning libraries, these dependency structures
should be considered and compared separately. We need a compre-
hensive understanding regarding to the influence of dependency
structure interactions on bug locations.

4.3 RQ3: Combination Analysis
Approach. To answer RQ3, we exhaustively investigate the inter-
section and union of syntactic, history, and semantic structure. In
total, we generate 8 combinations of these dependency structures,
measure their interaction with three representative TarдetSets:
BLFre_10%ile , BLChurn_10%ile , and BL, and make a systematic
comparison.

The 8 combinations are listed as follows: Syn ∩ His, Syn ∩ Sem,
His ∩ Sem, Syn ∩ His ∩ Sem, Syn ∪ His, Syn ∪ Sem, His ∪ Sem,
and Syn ∪ His ∪ Sem, where Syn, His and Sem represent the abbre-
viation of syntactic, history, and semantic structure. The notations,
∪ and ∩, represent the union operator and intersection operator.

For each combination, we use Depend4BL to calculate inter-
actions with BLFre_10%ile , BLChurn_10%ile and BL. In addition
to CPrecision and CRecall , we use the following two metrics to
measure the results:

BFIR, following the work of Mo et al. [39], measures the in-
crease of the average bug frequency of each bug location with the
combination over bug locations without the combination, defined
as:

BFIR = (
f re (ResultSet)

|ResultSet |
×
|BL − ResultSet |

f re (BL − ResultSet)
−1)×100% (13)

where |ResultSet | represents the number of bug locations in combi-
nation. |BL−ResultSet | represents the number of bug locations not
in combination. f re (ResultSet) represents the sum of bug frequen-
cies for bug locations in ResultSet . f re (BL − ResultSet) represents
the sum of bug frequencies for bug locations not in ResultSet .

BCIR, similarly, measures the increase of the average bug churn
of each bug location with the combination over bug locations with-
out the combination, defined as:

BCIR = (
churn (ResultSet)

|ResultSet |
×

|BL − ResultSet |

churn (BL − ResultSet)
− 1) × 100%

(14)
where churn (ResultSet) represents the sum of bug churn for bug
locations in ResultSet . churn (BL − ResultSet) represents the sum
of bug churn for bug locations not in ResultSet .

We use an example to illustrate BFIR and BCIR. For a BL with
three bug locations: {A,B,C}, its involved bug frequencies and
churn are listed as: (3, 100), (2, 200) and (1, 300). Given a ResultSet :
{A,B}, to calculate BFR, the result of f re (ResultSet) is 5 and the
result of f re (BL − ResultSet) is 1 respectively. Thus, the result of
BFIR should be ((5/2)*(1/1)-1) = 150%, meaning that the average bug
frequencywithin theResultSet is higher than the average frequency
in BL − ResultSet . The result of BCIR should be ((300/2)*(1/300)-1)

= -50%, meaning that the average bug churn within the ResultSet
is lower than the average frequency in BL − ResultSet .
Result. Table 4 presents the combination results. The column:
“Type” presents each combination. For each combination, other
columns present the average results of 5 studied subjects to cover
BLFre_10%ile , BLChurn_10%ile and BL respectively. For intersec-
tions and unions of combinations, we highlight the greatest scores
with a grey background color and a + mark respectively. If a com-
bination covers few bug locations, we mark (CPrecision, CRecall,
BFIR, BCIR) as (<0.1%, <0.1%, NULL, NULL).

The intersection of syntactic, history, and semantic structure
capture few bug locations with most frequencies and churn: BL-
Fre_10%ile and BLChurn_10%ile, and a small proportion of all bug
locations: 5.1%, showing fewer maintenance costs than other loca-
tions in frequency and churn: -73.4% and -90.2%. The intersection
of syntactic and semantic structure (Syn ∩ Sem) shows a high
CPrecision score: 83.3%, 64.3% and 86.4% to cover bug locations:
BLFre_10%ile, BLChurn_10%ile, and BL but a low CRecall score:
3.6%, 5.8% and 4.9%, consuming more frequency and churn than
other locations. Other intersections have relatively lower CRecall
scores over various bug locations as well.

The union of syntactic, history and semantic structures captures
the most bug locations: 63.5% of all the bug locations, as well as
the most severe bug locations: 62.5% in BLFre_10%ile and 57.5% in
BLChurn_10%ile. For unions of two structures, the union of history
and semantic structure (Syn ∪ His) has the highest CPrecision
scores: 27.1%, 22.0% and 24.9% in BLFre_10%ile, BLChurn_10%ile
and BL respectively. The union of syntactic and history structure
(Syn ∪ His) covers bug locations with more churn, whereas the
union of syntactic and semantic structure (His ∪ Sem) covers bug
locations with more frequencies. One possible explanation is that
there are considerable variations between locations with the highest
frequencies and those with the highest churn.

Answer to RQ3: Combinations of syntactic, history, and se-
mantic structure have the potential to effectively improve bug
prediction performance: unions of all structures cover more
bug locations, and combinations involving semantic structure
capture severe bug locations more efficiently.

Implications. The result of RQ3 is unexpected. The intersection
of three structures captures few bug locations, whereas their union
captures the most bug locations, demonstrating that these depen-
dency structures are independent and complementary. We also
observe that combinations with semantic structure improve the
coverage efficiency. This inspires us to design flexible strategies of
structure combinations to enhance the bug prediction performance.

5 APPLICATION
This section discusses the follow-up research motivated by our
study, including the benchmark, toolkit, and insights on future
directions.
Benchmarks of correlations between dependency structures
and bug locations in deep learning libraries. Our study out-
puts a comprehensive dataset of correlations between dependency
structures and bug locations, including 279,788 revision commits,

256

Towards Demystifying the Impact of Dependency Structures on Bug Locations in Deep Learning Libraries ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 4: The combination results of syntactic, history and semantic structures. Syn,His, and Semare abbreviations for syntactic,
history, and semantic.

BLFre_10%ile BLChurn_10%ile BL
Combinations CPrecision CRecall BFIR BCIR CPrecision CRecall BFIR BCIR CPrecision CRecall BFIR BCIR
Syn ∩ His <0.1% <0.1% NULL NULL <0.1% <0.1% NULL NULL 80.7% 5.1% -34.0% -62.8%
Syn ∩ Sem 83.3%+ 3.6% 1020.1%+ 963.2%+ 64.3%+ 5.8%+ 44.8%+ 24.1%+ 86.4% 4.9%+ 165.7%+ 141.3%+
His ∩ Sem 18.2% 8.0%+ -46.0% -50.5% 25.0% 2.2% -79.5% -68.4% 87.8%+ 4.6% -34.5% -57.1%
Syn ∩ His ∩ Sem <0.1% <0.1% NULL NULL <0.1% <0.1% NULL NULL 72.7% 5.1% -73.4% -90.2%
Syn ∪ His 3.6% 57.7% 95.4% 78.8%+ 2.4% 58.7%+ 59.9% 44.4% 5.9% 62.0% 34.4% 21.8%+
Syn ∪ Sem 6.1% 41.1% 77.4% 28.4% 4.2% 33.4% 114.6%+ -3.2% 11.5% 34.7% 36.1%+ -3.7%
His ∪ Sem 27.1%+ 26.6% 101.4%+ 77.2% 22.0%+ 34.2% -24.8% 50.9%+ 24.9%+ 45.6% -12.0% -7.4%
Syn ∪ His ∪ Sem 3.1% 62.5%+ 87.8% 74.7% 2.7% 57.5% 54.5% 40.4% 5.2% 63.5%+ 31.6% 20.7%

Table 5: The run-time performance of Depend4BL.

Tool Caffe Keras Pytorch TensorFlow Theano
Depend4BL 0.07s 1.25s 14.24s 56.65s 0.16s
Titan [59] 0.07s 5.18s 24.11s 80.66s 0.43s
ACDC [55] 0.19s 5.57s 23.86s 80.41s 0.36s

8,715 bug fixes,1,715 bug locations, 73,225 syntactic dependencies,
203,867 history dependencies and 32,773 semantic dependencies
of the top 5 open-source deep learning libraries: Caffe, Keras, Py-
torch, TensorFlow, and Theano on Github in terms of stars and
forks. This dataset also contains the interaction between various
dependencies structures and bug locations for each subject. We
believe this dataset can (1) provide an effective and reliable basis
for detecting various forms of dependency structures and involved
bug locations in deep learning libraries; (2) support the research on
bug prediction techniques for deep learning libraries.
Dependency structure-centric bug analysis tool for deep lear-
ning libraries. Our study outputs a dependency structure-centric
bug analysis tool: Depend4BL for understanding bug locations
from dependency structures in deep learning libraries. We extract
the core component of our analysis framework and implement
Depend4BL. It has three steps, including data collection, model
construction, and interplay calculation, which are described in Sec-
tion 3; Table 5 presents the run-time performance. We observed
that Depend4BL consume less time than state-of-the-art reverse
engineering tools: Titan [59] and ACDC [56]. The output of De-
pend4BL can be further summarized as patterns for developers to
detect code smell or extracted as machine learning features for bug
prediction of deep learning libraries.
Useful insights on within-project bug prediction techniques
for deep learning libraries. The result of RQ1-3 presents that
when analyzing bugs in deep learning libraries, the syntactic, his-
tory and semantic structures should be combined together, which
provides useful insights and hints on bug prediction techniques. We
take the union of syntactic, history and semantic structures as input
to construct bug predictor for deep learning libraries and evaluate its
performance to validate our findings. Following the work of Qu et al.
[47], we leverage a state-of-the-art network embedding technique:
Node2Vec [25] to automatically extract features from structures for
bug prediction. Obviously, this is a binary classification problem,
and we choose 8 representative classifiers from traditional machine

learning and deep learning algorithms respectively, including Deci-
sion Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF), Extreme Gradient
Boosting (XGB), Convolutional Neural Network (CNN), Long Short
Term Memory Recurrent Neural Network (LSTM). For each subject,
we use the pre-release history to predict post-release bugs, and di-
vide the revision history as: 80% for training and 20% for testing. For
the training set, we use SMOTE [16] technique to solve imbalance
problem, repeat the 10-fold cross-validation 10 times (10×10) to
reduce the bias, and use the grid search strategies to automatically
tune the hyper-parameters of classifiers [53]. For the testing set,
we evaluate the performance of classifiers using AUC, Accuracy
and F1-measure, which are frequently used in the evaluation of
bug prediction techniques. Table 6 presents the results of these
classifiers on studied subjects. We highlight the greatest scores and
observed that the results are promising achieving nearly over 90%
scores on all evaluated metrics and studied subjects. The results can
further be improved and extended in cross-project bug prediction
and fine-grained bug prediction at the line/method level.

6 THREATS TO VALIDITY
In this section, we discuss the threats to validity and limitation of
our study.
Internal threats. First, we only investigated the correlation, not
the causality, between dependency structures and bug locations in
deep learning libraries. We believe the presence of some bugs may
be caused by changes in dependency structures. We will further
explore this causality relationship in our future work. Second, we
heuristically set thresholds for determining history and semantic
structures according to previous studies [20]. It is unclear whether
these threshold settings will generalize our studied subjects.We also
manually inspected and confirmed generated dependency struc-
tures for studied projects. Third, we collect commits, history struc-
tures, and bug fixes for each subject, from the first to the latest
release. Prior research [58] suggested that if only recent history is
used, the result could be different. To validate our work, we recal-
culate the data, extracting history structures and bug fixes from
each subject’s most recent 3 years of revision history. The results
showed that specific bug frequency and churn ranking orders are
different, but the general conclusions are exactly the same. Finally,
our tool: Depend4BL may produce wrong results. To reduce this
threat, we made our tool open source and continue to repair bugs
that have been disclosed.

257

ESEM ’22, September 19–23, 2022, Helsinki, Finland Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan Li*

Table 6: Performance of bug prediction onfive subjects using
the union of dependency structures with various classifiers.

Classifier Measure Caffe Keras Pytorch TensorFlow Theano
AUC 85.62% 76.54% 88.06% 86.76% 81.58%

DT [50] Accuracy 85.71% 75.50% 88.07% 86.76% 81.72%
F1-Measure 86.00% 75.38% 88.10% 86.80% 81.03%

AUC 80.96% 74.24% 82.82% 72.11% 81.87%
NB [49] Accuracy 81.43% 73.37% 82.76% 72.03% 81.53%

F1-Measure 83.54% 74.88% 81.66% 74.13% 81.76%
AUC 93.91%+ 83.90% 85.58% 89.88% 85.53%

SVM [43] Accuracy 94.37%+ 84.42% 85.53% 89.86% 85.54%
F1-Measure 95.12%+ 86.70% 85.56% 90.74% 85.42%

AUC 90.52% 75.63% 86.96% 75.79% 88.49%
LR [28] Accuracy 90.14% 76.38% 86.95% 75.80% 88.54%

F1-Measure 90.91% 79.83% 86.93% 73.99% 87.67%
AUC 91.41% 87.24% 88.62% 81.18% 83.64%

RF [44] Accuracy 91.55% 86.93% 88.63% 81.18% 83.63%
F1-Measure 92.50% 86.60% 88.66% 81.85% 83.67%

AUC 93.08% 87.39% 89.67%+ 91.51%+ 90.10%+
XGB [18] Accuracy 92.86% 86.93% 89.67%+ 91.51%+ 90.09%+

F1-Measure 92.96% 86.87% 89.67%+ 91.51%+ 90.11%+
AUC 92.90% 91.71%+ 84.27% 82.90% 84.58%

CNN [23] Accuracy 92.96% 91.55%+ 84.37% 82.96% 84.29%
F1-Measure 93.33% 91.89%+ 85.00% 82.54% 83.55%

AUC 91.33% 82.07% 87.74% 84.71% 85.14%
LSTM [19] Accuracy 90.14% 81.91% 87.74% 84.76% 85.54%

F1-Measure 91.57% 83.49% 87.77% 85.01% 84.89%

External Threats. The first threat comes from the quality of bug
fixes. Previous studies [26, 27] pointed out that a bug fix may not be
committed to fix bugs but to finish other tasks. To reduce this threat,
we manually collect expected bug fixes and further leverage related
methods like untangling changes [26] to remove noise. The second
threat comes from the chosen subjects. We intensively studied the
top 5 open-source deep learning libraries on Github in terms of stars
and forks. It is still uncertain whether our findings will generalize
to other open-source or industrial deep learning libraries. Studying
more subjects is our ongoing work. The third threat comes from
the imbalance problem of bug data, which is a common challenge
in machine learning and bug prediction. However, our objective is
to investigate dependency structures in deep learning libraries. To
mitigate this risk, we employ the sampling technique: SMOTE [16]
in our bug prediction in Section 5. Our ongoing work is to employ
advanced sampling techniques to address the imbalance problem.
Verifiability. To ensure the replicability of our study, we make the
tools and the data publicly available [3]. We also run statistical tests
to ensure that our measurements are statistically significant.

7 RELATEDWORK
In this section, we compare our work with related research.
Dependency Structure-based Bug Prediction. Leveraging vari-
ous dependency structures in bug prediction has been widely stud-
ied [15, 24, 42, 51, 57, 64]. Selby et al. [51] first extracted metrics
from syntactic structures to predict bugs in source files. Zimmer-
mann et al. [64] reported that network measures for syntactic struc-
tures are useful for constructing good bug predictors. Furthermore,
Cataldo et al. [15] derived density metrics from history structures

for defect prediction. Lin et al. [57] used deep neural networks to au-
tomatically learn features from semantic structures to improve bug
prediction. Cui et al. [20] conducted a comparative study of various
dependency structures in Apache open source projects. Compared
with these previous works, our study targets for validating the cor-
relation between dependency structures and bug locations in deep
learning libraries, which hasn’t been systematically investigated
yet. The results may benefit designing good bug predictors for deep
learning libraries.
Bug Analysis on Deep Learning Systems. There is also rich lit-
erature about bug analysis on deep learning systems. Zhang et al.
[62] investigated bugs of TensorFlow and classified them into 7 root
causes and 4 symptoms. Thung et al. [54] studied bug characteris-
tics in three deep learning systems: Mahout, Lucene, and OpenNLP,
including bug frequency, bug type, bug severity, bug impact, fix
duration, and fix effort. Humbatova et al. [29] summarized a taxon-
omy of bugs in deep learning systems. Islam et al. [30, 31] further
conducted an empirical study of bugs on deep neural networks
and summarized their bug fixing patterns. In particular, Shen et
al. [52] focused on bugs in deep learning compilers. Yan et al. [60]
studied numerical bugs in deep learning systems. Zhang et al. [61]
investigated bugs in Microsoft’s deep learning jobs. In compari-
son to previous bug analysis studies on deep learning systems, our
study starts with deep learning libraries, which are the foundation
of most deep learning systems. Our work focus on understanding
deep learning library bugs from the perspective of dependency
structures, as well as forecasting these bugs at an early stage by
utilizing dependency structures.

8 CONCLUSION
In this paper, we presented our systematic study on the correlation
between dependency structures and bug locations in deep learning
libraries. We conducted our study on the top 5 open-source deep
learning libraries on Github in terms of stars and forks, involving
279,788 revision commits and 8,715 bug fixes. Supported by De-
pend4BL, for each subject, we gathered three forms of dependency
structures: syntactic, history and semantic, and calculated their
interactions with bug locations. We investigated three research
questions based on these collected data. The results demonstrated
the independence and complementary nature of three dependency
structures in deep learning libraries, as well as their significant
association with bug locations and drastically different impacts. We
also presented a suite of qualitative and quantitative findings that
shed light on bug prediction techniques for deep learning libraries.

ACKNOWLEDGEMENT
This workwas supported byNational Natural Science Foundation of
China (61902288, 61972300, U21B2015), Strategic Priority Research
Program of Chinese Academy of Science(XDC05040100), National
Key Research and Development Program of China under Grant
(2019YFB1406404), Fundamental Research Funds for the Central
Universities (XJS220311).

REFERENCES
[1] 2022. a775e0c. https://github.com/tensorflow/tensorflow/commit/a775e0c
[2] 2022. ANTLR. https://github.com/antlr/antlr4

258

https://github.com/tensorflow/tensorflow/commit/a775e0c
https://github.com/antlr/antlr4

Towards Demystifying the Impact of Dependency Structures on Bug Locations in Deep Learning Libraries ESEM ’22, September 19–23, 2022, Helsinki, Finland

[3] 2022. Benchmark and Toolkit. https://anonymous.4open.science/r/ESEM22-Data-
038D

[4] 2022. Depends. https://github.com/multilang-depends/depends
[5] 2022. Git. https://git-scm.com
[6] 2022. GumTree. https://github.com/GumTreeDiff/gumtree
[7] 2022. keras. https://keras.io/
[8] 2022. List of self-driving car fatalities. https://en.wikipedia.org/wiki/Self-driving_

car#cite_note-15
[9] 2022. Networkx. https://networkx.org
[10] 2022. SVN. https://subversion.apache.org
[11] 2022. Uber is giving up on self-driving cars in California after deadly

crash. https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-
driving-cars-in-california-after-deadly-crash

[12] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: A System for {Large-Scale} Machine Learning. In 12th

USENIX symposium on operating systems design and implementation (OSDI 16).
265–283.

[13] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Be-
likov, Alexander Belopolsky, et al. 2016. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints (2016), arXiv–1605.

[14] Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshy-
vanyk, and Andrea De Lucia. 2013. An empirical study on the developers’ per-
ception of software coupling. In Proceedings of the 2013 International Conference

on Software Engineering. IEEE Press, 692–701.
[15] Marcelo Cataldo, Audris Mockus, Jeffrey A Roberts, and James D Herbsleb. 2009.

Software dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering 35, 6 (2009), 864–878.

[16] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[17] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings

of the IEEE international conference on computer vision. 2722–2730.
[18] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu

Cho, et al. 2015. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 4
(2015), 1–4.

[19] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[20] Di Cui, Ting Liu, Yuanfang Cai, Qinghua Zheng, Qiong Feng,Wuxia Jin, Jiaqi Guo,
and Yu Qu. 2019. Investigating the impact of multiple dependency structures on
software defects. In Proceedings of the 41st International Conference on Software

Engineering. IEEE Press, 584–595.
[21] Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta

Coelho, and Ahmed E Hassan. 2016. A framework for evaluating the results of
the szz approach for identifying bug-introducing changes. IEEE Transactions on

Software Engineering 43, 7 (2016), 641–657.
[22] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,

and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE). IEEE, 408–419.
[23] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference

on computer vision. 1440–1448.
[24] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. 2000. Predicting

fault incidence using software change history. IEEE Transactions on software

engineering 26, 7 (2000), 653–661.
[25] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining. 855–864.
[26] Kim Herzig. 2013. The Impact of Tangled Code Changes. In Working Conference

on Mining Software Repositories.
[27] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature:

howmisclassification impacts bug prediction. In 2013 35th international conference
on software engineering (ICSE). IEEE, 392–401.

[28] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. Vol. 398. John Wiley & Sons.

[29] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning sys-
tems. In Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering. 1110–1121.
[30] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A

comprehensive study on deep learning bug characteristics. In Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 510–520.

[31] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-
ing deep neural networks: Fix patterns and challenges. In 2020 IEEE/ACM 42nd

International Conference on Software Engineering (ICSE). IEEE, 1135–1146.
[32] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM

international conference on Multimedia. 675–678.
[33] N. Kambhatla. 2004. Combining lexical, syntactic, and semantic features with

maximum entropy models for information extraction. In Annual Meeting of

Association of Computational Linguistics, 2004.
[34] Richard M Karp. 1975. On the computational complexity of combinatorial prob-

lems. Networks 5, 1 (1975), 45–68.
[35] Donghwa Kim, Deokseong Seo, Suhyoun Cho, and Pilsung Kang. 2019. Multi-

co-training for document classification using various document representations:
TF–IDF, LDA, and Doc2Vec. Information Sciences 477 (2019), 15–29.

[36] JH Lau and T Baldwin. 2019. An Empirical Evaluation of doc2vec with Practical
Insights into Document Embedding Generation, July 2016.

[37] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shah-
bazian, and Nenad Medvidovic. 2015. An empirical study of architectural change
in open-source software systems. In Proceedings of the 12th Working Conference

on Mining Software Repositories. IEEE Press, 235–245.
[38] Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng.

2014. Early diagnosis of Alzheimer’s disease with deep learning. In 2014 IEEE

11th international symposium on biomedical imaging (ISBI). IEEE, 1015–1018.
[39] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. 2015. Hotspot patterns: The

formal definition and automatic detection of architecture smells. In Software

Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on. IEEE, 51–60.
[40] Ran Mo and Mengya Zhan. 2019. History coupling space: A new model to

represent evolutionary relations. In 2019 26th Asia-Pacific Software Engineering

Conference (APSEC). IEEE, 126–133.
[41] Ruihui Mu and Xiaoqin Zeng. 2019. A review of deep learning research. KSII

Transactions on Internet and Information Systems (TIIS) 13, 4 (2019), 1738–1764.
[42] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics

to predict component failures. In Proceedings of the 28th international conference

on Software engineering. ACM, 452–461.
[43] William S Noble. 2006. What is a support vector machine? Nature biotechnology

24, 12 (2006), 1565–1567.
[44] Mahesh Pal. 2005. Random forest classifier for remote sensing classification.

International journal of remote sensing 26, 1 (2005), 217–222.
[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[46] Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Lidan Wang, Yuqiao Hou, and
Zijiang Yang. 2015. Exploring community structure of software Call Graph and
its applications in class cohesion measurement. Journal of Systems and Software

108 (2015), 193–210.
[47] Yu Qu, Ting Liu, Jianlei Chi, Yangxu Jin, Di Cui, Ancheng He, and Qinghua

Zheng. 2018. node2defect: using network embedding to improve software defect
prediction. In 2018 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 844–849.
[48] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-

pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[49] Irina Rish et al. 2001. An empirical study of the naive Bayes classifier. In IJCAI

2001 workshop on empirical methods in artificial intelligence, Vol. 3. 41–46.
[50] S Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics 21, 3 (1991),
660–674.

[51] Richard W. Selby and Victor R. Basili. 1991. Analyzing error-prone system
structure. IEEE Transactions on Software Engineering 17, 2 (1991), 141–152.

[52] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 968–980.
[53] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi

Matsumoto. 2018. The impact of automated parameter optimization on defect
prediction models. IEEE Transactions on Software Engineering 45, 7 (2018), 683–
711.

[54] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An empiri-
cal study of bugs in machine learning systems. In 2012 IEEE 23rd International

Symposium on Software Reliability Engineering. IEEE, 271–280.
[55] Vassilios Tzerpos and Richard C Holt. 2000. Accd: an algorithm for

comprehension-driven clustering. In Proceedings Seventh Working Conference on

Reverse Engineering. IEEE, 258–267.
[56] Vassilios Tzerpos and Richard C Holt. 2000. ACDC: An Algorithm for

Comprehension-Driven Clustering.. In wcre. 258–267.

259

https://anonymous.4open.science/r/ESEM22-Data-038D
https://anonymous.4open.science/r/ESEM22-Data-038D
https://github.com/multilang-depends/depends
https://git-scm.com
https://github.com/GumTreeDiff/gumtree
https://keras.io/
https://en.wikipedia.org/wiki/Self-driving_car#cite_note-15
https://en.wikipedia.org/wiki/Self-driving_car#cite_note-15
https://networkx.org
https://subversion.apache.org
https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash
https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash
https://arxiv.org/abs/1908.10084

ESEM ’22, September 19–23, 2022, Helsinki, Finland Di Cui, Xingyu Li, Feiyang Liu, Siqi Wang, Jie Dai, Lu Wang, and Qingshan Li*

[57] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Ieee/acm International Conference on Software

Engineering. 297–308.
[58] Sunny Wong and Yuanfang Cai. 2011. Generalizing evolutionary coupling with

stochastic dependencies. In Ieee/acm International Conference on Automated Soft-

ware Engineering. 293–302.
[59] Lu Xiao, Yuanfang Cai, and Rick Kazman. 2014. Titan: A toolset that connects

software architecture with quality analysis. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
763–766.

[60] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.
2021. Exposing numerical bugs in deep learning via gradient back-propagation.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 627–638.

[61] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An empirical study on program failures of deep learning jobs. In 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
1159–1170.

[62] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis. 129–140.
[63] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In

Proceedings of the 37th International Conference on Software Engineering-Volume

1. IEEE Press, 913–923.
[64] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects using

network analysis on dependency graphs. In Proceedings of the 30th international

conference on Software engineering. 531–540.

260

	Abstract
	1 Introduction
	2 Preliminary
	3 overview
	3.1 Studied Subjects
	3.2 Data Collection
	3.3 Model Construction
	3.4 Interplay Calculation

	4 empirical study
	4.1 RQ1: Similarity Analysis
	4.2 RQ2: Coverage Analysis
	4.3 RQ3: Combination Analysis

	5 Application
	6 threats to validity
	7 Related Work
	8 Conclusion
	References

